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In  non-equilibrium inviscid blunt-body flows, the state of the gas at  the stagna- 
tion point is known to be in thermodynamic equilibrium for all finite relaxation 
times. The dependence of this state on the non-equilibrium processes and body 
geometry is investigated for the most general conditions. The stagnation-point 
state is always found to be in a narrow range bounded on one side by the state 
obtained in an equilibrium flow. The other bound, called the frozen limit, is far 
removed from the state obtained in an identically frozen flow (infinite relaxation 
times). For certain state variables, the frozen-limit value lies outside the range 
determined by frozen and equilibrium flow. Significant errors are found in several 
published predictions of the stagnation-point state, resulting from the non- 
analytic approach to equilibrium in nearly frozen flow. 

The two bounds on the pressure are expressible in terms of the normal shock 
density ratios for equilibrium and frozen flow. The actual pressure for an arbi- 
trary flow situation is found to depend only on the shock nose radius and the 
relation between density and time in the relaxation zone behind a normal shock 
wave. If the density law is given by a single relaxation model, a closed form ex- 
pression for the pressure is obtained. The analysis is carried out for both plane 
and axisymmetric flows, and is also valid for non-equilibrium free-stream con- 
ditions. 

1. Introduction 
Among the many difficulties that beset the inviscid supersonic blunt-body 

problem, there is at least one saving grace. For the symmetric flow of a gas in 
equilibrium, the stagnation-point state is uniquely defined by the free-stream 
conditions. This information plays an important role in the direct methods of 
approach in which the body is specified. In the indirect methods, in which the 
shock wave is specified, the known stagnation-point state serves as a useful check 
on the accuracy of the solution. 

The situation for non-equilibrium flow is not entirely clear. The stagnation- 
point enthalpy is clearly equal to the total enthalpy in the free stream, but there 
remains the question whether other state variables depend on the non-equilibrium 
processes and the body shape. While there has been a considerable body of litera- 
ture on non-equilibrium blunt-body flows since the pioneering work of Freeman 
(1958), there is still considerable confusion concerning this question. Some 
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investigators have assumed that the stagnation-point state is independent of 
the degree of non-equilibrhm, while others have reported a strong dependence for 
certain state variables. The resolution of this discrepancy is the main purpose of 
the present work. 

For bodies with smooth nose shapes, most investigators have either stated or 
deduced that the gas is always in thermodynamic equilibrium at the stagnation 
point (for finite relaxation times). While this fact may be intuitively obvious, 
a rigorous proof was lacking, since the analytic solutions were based on certain 
approximations, and the purely numerical schemes were limited in accuracy. 
Recently, independent investigations by Stulov & Turchak (1 966) for vibrational 
relaxation, and Conti & Van Dyke (1966, 1969a) for dissociation of a Lighthill 
gas, established rigorously by means of a local analysis that equilibrium con- 
ditions are in fact reached a t  the stagnation point. (One should note that the 
analysis of Stulov & Turchak is not completely correct, as will be indicated later.) 
They also showed that certain state variables could approach the stagnation 
point along the axis with infinite gradients. Although these analyses could not 
determine the variation of this equilibrium state itself with changes in the non- 
equilibrium parameters, they made evident why such discrepancies could exist 
concerning this question. 

In what follows, the basic equations will be formulated, and previous analyses 
that bear on the question of the stagnation-point state will be critically reviewed. 
After presenting some generalizations of the results of the local analyses referred 
to above, we will show how the variation of this state with the non-equilibrium 
process can be simply predicted. Both plane and axisymmetric flows will be 
simultaneously treated, and the effect of a non-equilibrium free stream will be 
included. 

2. Formulation of the problem 
We consider the steady, symmetric (plane or axisymmetric) flow due to a blunt- 

nosed body immersed in a uniform, supersonic stream. Translational equilibrium 
is assumed to exist among the molecular species, thus defining a translational 
temperature at every point. Molecular transport is neglected, so that the detached 
shock wave becomes a discontinuous surface. Non-adiabatic processes such as 
energy loss due to radiation are assumed absent. 

We will use a Cartesian or cylindrical co-ordinate system, with origin at the 
stagnation point, as shown in figure 1. The shock position on the axis is at  y = 6. 
The shock nose radius R,, free-stream velocity U, and free-stream density pm 
will serve as reference quantities. The conservation equations for our model are 

mass : (pxh),  + xj (pv) ,  = 0; (1 a )  

x momentum: uuz + VU, +pJp  = 0; (1b)  

y momentum: uv, + vvy +pJp = 0;  (1c) 

energy : h+&(U2+V2)  = h,+&U2,; (14 
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where ~ c ,  v are velocity coniponents in the x, y directions, and p, p ,  h refer to the 
density, pressure, and specific enthalpy. Subscripts x, y indicate partial differen- 
tiation, while the indexj = 0 for plane flow, andj  = 1 for axisymmetric flow. 

FIGURE 1. Co-ordinate system. 

Generalizing the nomenclature of Vincenti & Kruger (1965), we assume that the 
thermodynamic state of the gas is determined by specifying the independent 
variables p ,  h and n general non-equilibrium variables ql, q2, . . ., qn. Some qi can 
represent the specific energy of the rotational, vibrational, or electronic state of a 
species, while others represent the concentration or mass fraction of one of several 
species. A qi could also refer to the electron temperature. The qi chosen are those 
that are sensibly out of equilibrium in some part of the flow, and that give a non- 
negligible contribution to the determination ofp. Admittedly, this choice can only 
be made a posteriori in some situations. 

In addition to the density p ,  we will subsequently introduce the specific entropy 
S, the temperature T and the frozen sound speed af. These are given by equations 

P a )  
of state of the form 

P = P(P2 h) q1, q 2 ,  . - * 7 qTA 
S = X(P>h,q1,qz, . .*,qn),  P b )  

T = T(P,h,q,,q,) ... ( 2 c )  

and af = ar(P, h, q1, q2) * * * ) a n ) -  ( 2 4  

Equations ( 2 )  are not independent, but are related through the first and second 
laws of thermodynamics by 

and 

The non-equilibrium processes are assumed to be governed by m coupled 
reactions, (the word ‘reaction ’ is used to describe dissociation-recombination, 
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ionization, vibrational relaxation, etc.) each of which involves some of the vari- 
ables qi. The rate of change of the variable qi due to reaction r is given by the 
generalized rate equation 

(%),- ( u g + v $ )  = ~ ~ , ~ ( p , h , q ~ , q ~  ,..., q,J. 
T 

(4) 

The function q T  can also be written in terms of the local relaxation time as 

The total rate of change of qi due to all reactions is then given by 

Under the condition of complete thermodynamic equilibrium, the thermo- 
dynamic state of the gas can be considered a function of p and h only. From 
statistical mechanics, the variables qiare then determined by relations of the form 

qi = q 3 P A  (7) 

at equilibrium. Substitution of (7) into equations (2) yields equilibrium relations 
for other state variables, e.g. 

Since w ~ , ~  = 0 a t  equilibrium for all i and r ,  it  follows that the functions xi,T 
must satisfy the condition 

xi,r(p,h,qZ,qg, * - * , & )  = 0 (9) 

for all i and r .  The local relaxation times 7i,T, on the other hand, take on finite 
non-zero values under all physically realizable conditions. The conditions 
7i,r = 0 (equilibrium flow) and 7i,T = co (frozen flow) for all i and r can only be 
approached as mathematical limits, which may be non-uniform under certain 
situations. This point will be discussed further in 5 5. 

The condition of complete thermodynamic equilibrium is approached asymp- 
totically in certain well-known non-equilibrium steady flows. One such case is 
that of an isobaric flow, i.e. a flow at constant pressure. From momentum and 
energy considerations it follows that the velocity and the specific enthalpy are 
constant. The temporal evolution of each qiis thus obtained by integration of the 
set of equations (4) to (6), with p and h held constant. Since distance is propor- 
tional to the time, the solution also gives the spatial evolution of the qi. In the 
limit of infinite time or distance, each qi must approach the equilibrium value 
given by (7),  irrespective of its initial value. This solution is just the Galilean 
transformation of that for a closed, adiabatic system, which is assumed to be 
inherently stable. 

A more interesting case is a strictly one-dimensional flow, such as exists in the 
relaxation zone behind a normal shock wave. If v is the one-dimensional velocity 
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(positive in the upstream direction), the equations in the relaxation zone, obtained 
by integrating equations (l) ,  can be written as 

Since the shock wave is assumed to be of zero thickness, the non-equilibrium 
variables immediately behind the shock wave assume their upstream values. 
Therefore 

The other state variables behind the shock wave are obtained by the simultaneous 
solution of (2), (10) and (11). Using these as initial conditions, equations (2), 
( lo) ,  and the one-dimensional rate equation, 

can be integrated to determine the solution in the relaxation zone. In  the limit of 
infinite distance downstream of the shock wave, the state of the gas will approach 
the equilibrium state given by the simultaneous solution of (8a )  and (10). This 
state is also the state immediately behind the shock wave for the singular equili- 
brium flow conditions ri,r = 0. 

In  the present problem, the conditions on the axis behind the shock wave are 
identical to the frozen conditions behind a normal shock wave. But the flow near 
the axis of symmetry is two-dimensional. Specializing equations (1)  in the vicinity 
of the axis, where 

u M xux and pz M xpxx, 

we obtain the following set of equations, valid on the axial streamline: 

1 
u:+v- = --p 

dy p xx’ 

h+++ = hm+hU2,. ( 1 3 4  

The presence of pxr in (13 b )  makes the system (2a), (12) and (13) incomplete, 
attesting to the basic elliptic nature of the subsonic flow. Thus, the integration of 
the flow along the axial streamline in order to obtain the stagnation-point state 
cannot be accomplished without some additional assumptions or approximations. 
In  the next section we will examine the various approximations employed by 
previous investigators to solve equations (13), as well as the results of numerical 
solutions of the full equations (1). In  some of the discussion, it will be convenient 
to  introduce the Lagrange particle time t ,  related to the velocity v and position 

v = Dy/Dt. (14) Y by 



54 M .  Vinokur 

3. Review of previous analyses 
Semi-analytic solutions 

We now present a unified discussion of previous semi-analytic treatments of non- 
equilibrium blunt-body flows, confining our attention to the determination of the 
stagnation-point conditions. Although some of the investigators employed spheri- 
cal or cylindrical co-ordinates referred to the body or to the shock wave, our 
discussion will be based on equations (13). Thus, some of the relations we 
present will differ in detail from the actual ones employed due to the absence 
of curvature terms. 

The various solutions can be classified in several different ways. While some 
investigators employed the transverse momentum equation (1 3 b ) ,  approximating 
pZ2 in some manner, others discardedit entirely and chose instead an approximate 
form of the normal momentum equation (13c).  A different kind of grouping is 
that between those who solved the coupled set of equations (2a ) ,  (12) and (13), 
and those who attempted to uncouple the non-equilibrium processes from the 
fluid mechanics. The latter employed a mapping technique to  map a previously 
determined isobaric or normal shock solution (discussed in the previous section) 
onto the axial streamline. The mapping function in each case was determined by 
simple integrations. 

The earliest semi-analytic treatment is found in Freeman's (1  958) paper.? 
He employed the Newtonian approximation to solve for the flow of Lighthill's 
ideal dissociating gas past a sphere. The non-equilibrium variable q is identified 
with the atom mass fraction a. Freeman introduced a new independent variable 
0 along each streamline defined by 

where t is the Lagrange particle time measured from the shock wave, and C is a 
proportionality constant in his assumed rate law. According to  the Newtonian 
approximation, the specific enthalpy on each streamline is a constant. Further- 
more, on the axis, where there is no centrifugal correction, the Newtonian pres- 
sure behind the shock wave is impressed directly on the body. Therefore 0 
is just proportional to t on the axial streamline. Using the strong-shock values 
p = pm 0': and h = U:,, Freeman numerically integrated the rate equation ( 1 2 ) ,  
with the aidof (14)and( 15),to obtain theisobaric solutiona(0). Substitutioninto 
(2a)  then yielded p(0) .  The mapping from 0 to  y is accomplished from the in- 
version of (14), which can be written as 

The dependence of pv on t (or 0) was obtained from (13a) ,  (13b) and (14), neg- 
lecting the term (l/p)p, in (13b).  While this approximation, based on the 
condition pip, + 1,  is valid behind the shock wave, it must break down at the 

The following interpretation of Freeman's work differs somewhat from the Presenta- 
tion in his original paper, and is motivated by Chisnell (1966). 
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stagnation point, where v = 0 and pxx  + 0. The function pv(t)  is a simple closed 
form expression that will be derived in 3 6 .  

The results of Freeman’s analysis are embodied in his figure 9, which shows 
the variation of a from the shock wave to the body for different values of a di- 
mensionless relaxation time. The curves exhibit the proper qualitative behaviour 
of a gradual approach to the stagnation-point value for small relaxation times, 
and steep gradients for large relaxation times. The final conclusion that the 
same equilibrium state is reached for all finite relaxation times is subject to 
question, since it rests on the assumption of an isobaric process, which is not 
strictly correct. Also, gradients near the stagnation point are in error, due to 
the improper treatment of ( 1  3 b ) .  

A similar analysis was carried out by Murzinov (1 961) for vibrational relaxation. 
He also assumed a constant pressure (taken to be the average of the pressure at  
the body and the shock for frozen flow) and constant enthalpy (equal to the stag- 
nation enthalpy). The variable q is the vibrational energy E,,, Murzinov intro- 
duced the Howarth-Dorodnitsyn variable 

r = -  PdY 
P s  s” 0 

as his new independent variable. Since the right-hand side of (13  b )  is important 
only near the body, he approximated it by its stagnation-point value, i.e. 
( l / p ) p x x  = - u:,,, where the subscript b refers to quantities evaluated at the body. 
Equations ( 1 3 a )  and (13b)  then yielded a closed form expression for pv(q), 
which was used to obtain EJq) by integrating (121, and finally p ( q )  from ( 2 a ) .  
(By assuming a constant relaxation time in the rate law, and expanding in 
small powers of E,/h, Murzinov actually obtained a closed form expression for 
p ( r ) . )  The mapping from to y was obtained by numerically inverting ( 1 7 ) .  
Solutions were presented for a sphere, with the values for R, and uxb taken from 
exact numerical solutions for equilibrium flow. The results are similar to those of 
Treeman, except that gradients near the stagnation point are now more accurate. 

A still greater refinement of Freeman’s method is the mapping technique of 
Gibson & Marrone (1962a) .  Their independent variable x, defined by 

t 

x = c j p 4  ( 1 8 )  

is equivalent to Freeman’s 0 on the axial streamline, since they also invoked the 
Newtonian approximation of constant p and h. Noting that for strong shocks the 
pressure changes in the relaxation zone behind a normal shock wave are also 
negligible, they obtainedp( t )  from a normal-shock solution rather than the isobaric 
solution of Freeman. The right-hand side of (13  b )  was approximated by letting 
pzz = (pXx),, the latter being determined by the shock radius R, and the known 
frozen shock conditions. Using ( 1 4 ) ,  equation (13b)  was then treated as a first- 
order differential equation for u,(t), and solved numerically. A simple quadrature 
then yielded pw(t)  from (13a) and (14 ) .  Numerical results using this method may 
be found in Gibson & Marrone (1962 b,  c )  for the flow of air behind a catenary shock 
wave. By varying R,, conditions ranging from near equilibrium with a thin 
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reaction zone near the shock wave, to near frozen, where the reaction zone ad- 
joins the body, are shown. In  particular, the transition from zero to infinite 
gradients at the body, to be discussed in 0 4, is clearly illustrated. In  spite of its 
great accuracy, the method still yields the same stagnation-point state for all 
conditions, since it maps the identical solution onto the axial streamline. 

Turning now to the approaches which do not employ ( 13 b ) ,  we find the earliest 
to be the extension to non-equilibrium flow of the method used by Ustinov (1960) 
to treat the equilibrium blunt-body problem. Ustinov assumed a three-term 
Taylor series about y = 6 for the function v ( y ) ,  i.e. 

where the three coefficients are known functions of a given shock shape and free- 
stream conditions. Anisimov & Khodyko (1964) evaluated the coefficients for a 
spherical shock wave with vibrational relaxation. They only carried the method 
as far as determining the stand-off distance from the condition v( 0 )  = 0, indicating 
how the remainder of the system of equations could be integrated. This was 
actually carried out by Lun’kin & Shtengel(l964) for a spherical shock wave in a 
dissociating diatomic gas, although they assumed constant pressure and enthalpy 
to simplify the calculations. Thus, they integrated equation (12 ) ,  with the aid of 
(19), and determined the other variables from (2). Their results differ from those 
of the other methods in that the density exhibits anovershoot for near-equilibrium 
flow. This may be due to the poor convergence of the Taylor expansion in this 
limit, which makes the three-term truncation in (19) a poor approximation. A 
point of confusion in all three papers is that the solutions are claimed to be for a 
spherical body, and the needless (and incorrect) assumption is made that the 
shock wave and body are concentric. 

The semi-analytic approach is also a necessary adjunct of scheme I of the 
numerical method of integration relations (see Belotserkovskii 1966, Hayes & 
Probstein 1966) in which the shock layer is divided into longitudinal strips. 
Here the stagnation-point state is needed as an initial condition for the integra- 
tion along the body. The method was used in the one-strip approximation by 
Shih & Baron (1 964) to treat a sphere in a five-component reacting air mixture, 
and by Hermann (1965), who considered a circular cylinder in a mixture of 
reacting 0, and inert N,. Both assumed a linear variation of pux  with y ,  which 
can be written, after manipulation with (13a), as 

pux=. -2PsV.9 ( 1-- ;) -p,uxs ( 1 - 2 -  ;) . 
(1+3)6 

But the integration of equation (13c), combined with (13a), and the assumption 
of a linear variation of pvux with y, yields the relation 

P8 - Pb = - Psv: - 4( 1 + j  ) ~P,VSU,,. (21) 

(1+j)4S%P% = (-17s--17b)c1--2(Y/6)l-(Y/~)Psv~. (221 

The elimination of psuzs from (20) and (21) results finally in 



Stagnation-point conditions in blunt-body $ows 57 

Equation (22) provides the closing relation to integrate the coupled set of equa- 
tions numerically for an assumed 6. Unfortunately, the presence of the unknown 
p,,requires this to be done iteratively. Of the results presented in these two papers, 
the most significant is figure 5 of Shih & Baron (1964), which shows a spread in 
stagnation pressures, with the non-equilibrium values lying between the equili- 
brium and frozen values. (There is no noticeable spread between the equilibrium 
and non-equilibrium values of temperature and species concentrations.) We 
note from (22) and (13a) that pv varies quadratically with y, as opposed to the 
quadratic variation of v with y assumed in (19). Lun’kin & Popov (1964, 1966) 
used the two-strip approximation to treat a sphere in oxygen. Since both 6 
and ~ ( $ 6 )  are assumed, they simply utilized a quadratic variation of v with y 
for their closing relation. Their results, as tabulated in Belotserkovskii (1966), 
also showed a spread in stagnation pressures. 

In  comparing the two types of semi-analytic methods, we note that in the 
mapping techniques a full set of equations was solved approximately, while in 
the methods not employing (13b) a partial, approximate set of equations was 
integrated exactly. Solutions using the former methods are inherently incapable 
of resolving differences in stagnation-point states, while results from the latter 
methods are of questionable accuracy due to the non-analytic nature of the 
approximating functions (see 9 4). The final step of combining the advantages of 
both methods was taken by Conti (1964, 1966), who employed an improved ver- 
sion of the method of series truncations, originally developed by Swigart (1963). 
Conti treated the flow of a mixture of reacting 0, and inert N, behind a circular 
cylindrical shock wave (1964) and a spherical shock wave (1966), assuming a 
cosinusoidal-square variation of the pressure with the polar angle. His first- 
truncation system of equations is essentially equivalent to equations (%), 
(12), and (13), with p, approximated as 

Pzx = (Pzx)8 PIPS (23) 

The complete system of equations was integrated numerically, using several 
transformations to  facilitate the integration near the stagnation point. In  addition 
to the spread in stagnation-point pressures, Conti also obtained differences in 
the degree of dissociation and temperature in the fourth and fifth significant 
figures, respectively. Recently (Conti & Van Dyke 1969u), very precise calcula- 
tions were performed for a Lighthill gas, using a choice of independent variable 
that was aided by a knowledge of the local behaviour of the solution near the 
stagnation point. The results clearly show a small (but definite) variation of 
stagnation-point values of all variables with the degree of non-equilibrium. 

Numerical solutions 

The earliest numerical treatment is due to Lick (1960), who used the inverse 
marching technique (see Hayes & Probstein 1966) to solve for the flow of reacting 
0, and inert N, behind a catenary shock wave. Unfortunately, the range of shock 
radii used did not encompass the near-frozen regime covered by other investi- 
gators. Although variations in stagnation-point values were found for the 
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pressure and the degree of dissociation, the latter is incorrect, being actually in 
the wrong direction (see $5). 

Scheme I1 of the method of integral relations, in which the shock layer is 
divided into strips normal to the body, was employed in the second approxima- 
tion by Belotserkovskii & Dushin (1964) to treat a sphere in dissociating 0, 
and by Dushin & Lun’kin (1966), who considered a sphere in a five-component 
reacting air mixture. A compendium of graphical and tabular results from these 
two papers, as well as other calculations, may be found in Belotserkovskii (1966). 
The results for the stagnation-point state show large variations in the temperature 
and species concentrations in the near-frozen rkgime, in contrast to the very 
small variations found by Conti (1966). The former are clearly in error (see $ 5 ) .  

Telenin’s method (Gilinskiy, Telenin & Tinyakov 1964) was used to investigate 
the effect of reacting air (Stulov & Telenin 1965), and vibrational reIaxation 
(Stulov & Turchak 1966; Saiapin 1966) in the flow about a sphere. In the near- 
frozen case, the stagnation-point states were also in error, since they were derived 
from crude extrapolations. In the paper of Stulov & Turchak, a local analysis 
(to be described in the next section) was carried out, indicating the presence of 
infinite gradients. Yet no attempt was made to use this local solution to improve 
the stagnation-point solution. 

The conclusion drawn from the analysis of the numerical solutions is that the 
relatively coarse grid in physical space necessary to obtain the global solution in 
the complete shock layer can lead to large errors in the stagnation-point state in 
the near-frozen limit. This is a direct result of the non-analytic nature of the flow 
near the stagnation point, which we will now investigate by means of a local 
solution. 

4. Local stagnation-point analysis 
In  this section we generalize the results of Conti & Van Dyke (1969a) for the 

local solution near the stagnation point, to arbitrary non-equilibrium processes, 
following the (suitably corrected) arguments of Stulov & Turchak (1966). Using 
the differential form of (2a): 

(where the subscript qj indicates that all other qi ( j  =+ i) are held constant in the 
differentiation), equation ( 1 3 ~ )  can be combined with (13c), (13d), (12) and (13b) 
to yield 

For smooth nose shapes, pzz must be finite a t  the stagnation point. From (13b) 
it follows that uzb is finite. Since all w ~ , ~  are assumed finite, it follows from (25) 
that dvldy is finite a t  the stagnation point. Let us define 
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where the finite constant C > 0 must be determined from a global solution. 
Consider a point on the axis where v = vl, and ]ul/v,] < 1.  Ifp,,, is the maximum 
value of p between this point and the stagnation point, it follows from (13c) 
and (13d) that 

(27) 

Furthermore, since v N C y  near the stagnation point, one sees from (14) that a, 
fluid particle requires a logarithmically infinite time to reach the body from 
point 1.  But (1 3 d )  and (27) show that pressure and enthalpy changes are negligible 
during this process. The fluid particle therefore essentially undergoes an iso- 
baric process in time and must reach a state of complete thermodynamic equili- 
brium a t  the body. Thus, the thermodynamic state at  the body is an equilibrium 
state, and is a unique function of $+, and hb. Whereas for given free-stream con- 
ditions it follows from (1 3 d )  that 

the pressure pb cannot be determine from the local analysis. We will show in 
$ 5  that bounds on pb can be simply established. The actual determination of 
pb from a simplified global analysis will be discussed in $6. Since ( q r ) b  = 0, 
equations (25) and (26) lead immediately to 

hb = h..,,+iU%, (28) 

?h,b = c/(l +j). (29) 

The local analysis can also determine the manner in which the state variables 
approach their stagnation-point values. From equations (13c), ( 1 3 4 ,  (26) and 
(28) we can write 

( 3 0 4  

(30b) 

1c2 2 pwPb-PbZ Y 
h x  h -1C2 2 and b 2 Y  

for small y .  Defining qi by 

qi = qib +q; = &(Pb, hb) + d ,  
and noting that = 0, it follows from (30) and (31) that 

With the aid of (5) and (32), equation (12) can then be written in the form 

where 

and 

The general solution of (33) takes the form 
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where A, is the kth eigenvalue of Bij, CF is the ith component of the eigenvector 
belonging to A,, and Ki is obtained from the solution of the matrix equation 

00 

C (Bij - 24j) Ki = - Ai. 
j=l 

(37) 

Since q; is real, and q;(O) = 0, it follows that h k  is real and positive for all k. 
(This has been rigorously proved for chemical non-equilibrium by Emanuel 
1963.) The constants a, must be determined from a global solution. 

The dominant behaviour of q; near the stagnation point depends on whether 
the minimum value of h k  is greater or less than 2. In  making the comparison, we 
must exclude those values of k for which the global solution gives a, = 0. Purther- 
more, a particular non-equilibrium variable qi may have a zero value of the eigen- 
vector component C,k for some k. We therefore define 

hi = minimum value of h k  for which = akC? 4 0. 

Noting that solution (36) must be modified if A, is degenerate or equal to 2, we 
can state the following general results for the dominant behaviour of qi near the 
stagnation point: 

(a )  If hi > 2, 

( b )  If hi = 2, and is of multiplicity p ,  

qi z qib + &y2- (38) 

qi qib f GY2(log Y)", (39) 

where m is a positive integer satisfying 1 < m < p .  
(c) If hi < 2, and is of multiplicity p ,  

qi qib  + Gy"(log g)m, (40) 

where m is a positive integer satisfying 0 < m < p - 1.  
One can therefore conclude that if A, > 2,  the variable qi has the same algebraic 

behaviour exhibited by the pressure and enthalpy, and it approaches its stagna- 
tion-point value with a zero slope. If hi > 2 for all i, then thisstatement holdsfor 
all thermodynamic state variables. If on the other hand, hi < 2, qi has a non- 
analytic behaviour near the stagnation point. The stagnation-point gradient is 
still zero as long at  hi > 1 .  The gradient becomes infinite when hi < 1 (except 
for the case hi = 1, m = 0, when the gradient is finite.) Since hi may have different 
values for the various non-equilibrium variables qi, we see that some qi may ap- 
proach the stagnation point with a zero slope, while others with an infinite slope. 
The behaviour of the other thermodynamic variables is determined by the mini- 
mum value of hi possessed by those variables pi on which they are functionally 
dependent, as given by (2).  

For a single non-equilibrium variable, our results are in agreement with those of 
Conti & Van Dyke (1969a), who performed a more formal local analysis for the 
dissociation of a Lighthill gas. The analysis of Stulov & Turchak (1966) for 
vibrational relaxation, whose basic line of argument was followed here, contains 
two flaws. Their proof of the attainment of equilibrium a t  the stagnation point 
was restricted by the assumption of a linear relaxation model for the rate law. 
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They also neglected pressure and enthalpy changes near the stagnation point. 
Thus, the term corresponding to our Kdy2 in equation (36) was missing in their 
solution. Consequently, the algebraic behaviour of solution (38), which one 
must always obtain for a flow that is sufficiently close to an equilbrium flow, was 
absent from their results. 

The results of this section clearly show that great care must be exercised in 
integrating the coupled equations near the stagnation point. The discrepancy in 
reported stagnation-point values of state variables (other than p or h) from 
numerical solutions is easily understood. Although the local analysis proves 
that the stagnation-point state is an equilibrium state, it  cannot determine what 
this state is. Since the state can be approached in a non-analytic manner, and is 
the result of a global solution, dependent on body shape and rate laws, it would 
seem at first glance to be difficult to determine. Fortunately, equation (30a) 
shows that the pressure behaves algebraically near the stagnation point. This 
will enable us to determine simply bounds on the range of its possible values, as 
shown in the next section. 

5. Equilibrium and frozen limits 
Classification of limiting stagnation-point states 

It was stated in $ 2  that the relaxation times ri,T are always finite and non-zero 
in magnitude under real conditions. Thus, the concept of equilibrium (or frozen) 
flow can only be regarded as being derived from the mathematical limit T ~ , ~ - +  0 
(or 00) for all T ~ , ~ .  The stagnation-point state is similarly obtained from the limit 
y+O, or equivalently, t+m,  where t is the Lagrangian particle time. Since 
equilibrium (or frozen) stagnation-point states are therefore defined in terms of 
double limits, one must specify the order in which the limits are taken. This leads 
to two types of limiting stagnation-point states. The first is obtained by taking 
the limit of equilibrium (or frozen) flow, i.e. ~ ~ , ~ - t 0  (or m), and then letting the 
flow reach the stagnation point (y-t 0). We shall refer to such a state simply as an 
equilibrium (or frozen) state. The other state is defined by letting a non-equili- 
brium flow reach the stagnation point (y -t 0) ,  and then considering the limit 
of such a state as ri,,+O (or 00). We will refer fo  this second type of state by the 
term equilibrium (orfrozen) limit. It is clear that the latter type of limiting state 
must be used in determining bounds on the set of possible stagnation-point states 
in non-equilibrium flow. 

The four limiting stagnation-point states defined above are simply calculable 
from the state equations and free-stream conditions, as is shown below: 

(i) Equilibrium. Since T ~ , ~  = 0 for all i, r, the state immediately behind the 
shock is an equilibrium state, and its calculation was discussed in Q 2. Denoting 
this state by the subscript se we can calculate the specific entropy from 

Sse = S*(l)s t! ,hse) .  (41) 

An equilibrium, adiabatic flow is isentropic. The equilibrium stagnation-point 
state, denoted by be, is thus determined by the condition 

#be = s*e* (42) 
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From equation (1 d )  i t  follows that the stagnation-point enthalpy is always given 

by 
h b  = h, ha+ iu;. (43) 

ssc = s*(Pbe, ht)? (44) 

Therefore, the stagnation-point pressure is given by the iterative solution of 

and the remaining state variables are then determined from (7) and (8). 

discussed in 92. The specific entropy is determined from ( 2 b )  as 
(ii) Frozen. The frozen conditions behind the shock, denoted by sf, were also 

SSf = 4P,,, hsj, qlm, q2m, . * - 3  Prim). (45) 

A frozen flow is also isentropic, and the non-equilibrium variables remain frozen 
a t  their values behind the shock. The frozen stagnation-point state, denoted by 
bf, is thus determined by iteratively solving for the pressure from 

ssf = s(pbf, ht, q l m ,  q2m, * * * Y  qnm). (46) 

(iii) Equilibrium limit. We will denote the stagnation-point conditions in the 
equilibrium limit by the subscript bel. It is easy to demonstrate that this state is 
identical to the equilibrium state (case (i)), i.e. 

$bel = $be, (47) 

where Q, stands for any state variable. Consider a very small Lagrange time t2  
after a fluid particle has crossed the shock wave. From equations (IOa), (13a) 
and (14) it follows that 

I P Z ~ ~ - P ~ ~ ~ U S (  (1 +J’ ) ~ m  Um(Uz)maxt,, (48) 

where (u,),,~ is the maximum value of u, between the shock and point 2. By 
taking t ,  sufficiently small, the flow up to that time will deviate very little from 
the one-dimensional flow behind a normal shock wave. If all T<,? < t,, the fluid 
particle a t  time t, will have essentially undergone a one-dimensional relaxation, 
and approached the equilibrium shock conditions as closely as desired. For all 
times t > t , ,  the particle will remain as close to  equilibrium as desired, if all 
7<,? remain sufficiently small. I n  the limit 7i,r-+ 0, we obtain a discontinuous jump 
from conditions sf to  se at the shock wave, and conditions a t  the body are given 

(iv) Frozen limit. The stagnation-point state in the frozen limit, denoted by 
b f 1, is not expected to be the same as the frozen state (case (ii)), since the former 
is an equilibrium state (as proved in §a) ,  while the latter is out of equilibrium. 
One can readily show though that 

by (471. 

PbjI = Pbf* (49) 

Consider again the point on the axis close to  the body where I.ul/ws\ < 1 (see $4).  
Since the particle-flow time from the shock wave to  this point is finite, one can 
approach frozen conditions corresponding to  this velocity as closely as possible 
by letting all T ~ , ~  be sufficiently large. Specifically, for a fixed wl, one can obtain 
l(pl -plf)/pm U%l = O[(W,/W~)~], where plr is the frozen pressure corresponding 
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to vl. Equation (27) shows that both in the non-equilibrium and frozen flows, 
additional fractional pressure changes between this point and the stagnation 
point are also of O [ ( W ~ / W ~ ) ~ ] .  We thus arrive at  

I (Pb -Pbf)/Pm ui I = 0[(wl/vs)21~ (50)  

In  the limit q t - f  co, the non-equilibrium flow therefore first reaches the frozen 
conditions at the stagnation point, and then undergoes an adiabatic relaxation 
process a t  rest, in which the pressure and enthalpy remain fixed, but the other 
state variables assume equilibrium values. Thus, for example, the entropy in the 
frozen limit is given by 

sbfl = S*(Pbf, hi$), (51) 

while the frozen entropy #bf = SSf is given by (45). The uniform behaviour of the 
pressure, and the non-uniform behaviour of the other variables could have been 
anticipated from the results of the local analysis of 0 4. 

We will demonstrate in 5 6 that p b e  and $+,f do in fact give bounds on possible 
stagnation-point pressures. We show next that to a very high approximation, 
the range of variation of this pressure depends solely on the equilibrium and 
frozen shock density-ratios. 

Relation of stagnation-point pressures to shock density ratio 
The stagnation-point pressures for the two limiting cases of equilibrium and 
frozen flow are determined in an analogous manner from the shock conditions, 
since both result from an isentropic compression. Consequently, all the sub- 
sequent relations in which thevariables are not otherwise identified, are assumed 
to be valid for either equilibrium or frozen flow. 

The shock conditions will be expressed in terms of the shock density-ratio 

8 = p,/ps = -VJU,. (52 )  

The compression along the axis of symmetry is governed by the local isentropic 
exponent y ,  defined by 

Y = ( g ) s  = P 2 / P ,  (53) 

where a is the local speed of sound. Although y is not constant, its variation from 
the shock to the body is small. A fairly general bound is given by 

IYb-Ysl o(e2)* (54) 

Since the fractional change in enthalpy is of O(@) ,  as shown by (13d) ,  equation 
(43) follows from the relation Ih(ay/i%),l < O( l), which should be satisfied under 
most conditions. It is valid for equilibrium air, as shown in figure 4 of Moeckel & 
Weston (1958). 

Within the accuracy that y is constant, it can be expressed as a function of B 
alone. The precise conditions for this statement to hold require first the deter- 
mination of B. The equation of state on either side of the shock wave can be 
written in the form 

h=-- "+A,  
Y - 1 P  (55) 
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which can be considered the defining equation for A. I n  order to  include the case 
of a non-equilibrium free stream, we take for the isentropic exponent y, the 
frozen value ymr. A ,  would then represent the energy of the internal modes that 
are out of equilibrium with the translational mode. The -values of yse and A, 
behind a shock wave for the equilibrium flow of air have been plotted for various 
flight and shock-tube conditions by Sanders (1958). 

With y and A assumed specified, equations (10) and (55) can be combined to 
yield the following solution for E :  

where we have introduced the free-stream frozen Mach number M, = Um/amf, 
and the non-dimensionalization A = A / U L .  If we now assume that 

it follows from (54)' (56) and (57) that 

l / y  = 1 - 2E + O ( E 2 )  (58) 

between the shock and the body. The graphical data of Sanders (1958) show that 
the second relation (57) is satisfied for equilibrium air flows under most con- 
ditions. 

Introducing the non-dimensional variables 

we obtain from (loa), (lob), (52) and (53) for the pressure behind the shock wave 

while (13c) and (53) (with y constant) result in 

Equation (60) can be solved iteratively for p ( @ )  starting with the first approxi- 
mation j 3 O )  = l/e. If we use (58) and (59), with the further assumption that 

one can carry the iteration of p ( @ )  through the third approximation. Combining 
the result with (134, we obtain finally 

ga - gs = gE: + ~ e 2 - - ~ e 3 +  0 ( € 4 ) .  (62) 
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The stagnation pressure in either equilibrium or frozen flow is thus obtained 
from (59) and (62). The maximum range of variation of non-dimensional stag- 
nation pressures in a non-equilibrium flow is therefore 

- &,f = * ( € f  - ee) [1 - $(Ef f 8,) + 22 (6; + €1 Ee + e)] f 0(E4) * (63) 

Since (62) is quite accurate even for density ratios as high as E N Q, we note from 
(57) and (61) that the approximation can be used for shock waves as weak as 
N, - 2. Thus, relations (62) and (63) should be useful for most non-equilibrium 
flow situations, including those found in the laboratory. 

Bounds on  stagnation-point state variables 
Equation (63) shows that the signs of r)be-pbf and E f  - E, are the same. Thus, 
it is natural to distinguish between two classes of non-equilibrium blunt-body 
flows. We will denote as ordinary flows those for which ef > E,, since this is the 
situation normally encountered with cold, equilibrium free streams. Non- 
equilibrium free streams, such as an overdissociated nozzle flow, can result in 
E,  > ef,  which we associate with an extraordinary flow. It follows from (63) that 

flows?. I ordinary 
PbeZPbf for ( extraordinary (64) 

A quantitative estimate of the spread in stagnation-point pressures may be ob- 
tained by considering a strong shock wave in cold air for which ef = i, and E,  

may be as low as &. The maximum fractional spread in pressure is approximately 
(A’p/p)b = 0.05. 

The direction and magnitude of the spread in any other stagnation-point 
state variable q5 is obtained in terms of the spread in pressure from the thermo- 
dynamic derivative (8q5*/ap)h, since the states are all equilibrium states at the 
same total enthalpy. A general statement can be made about the entropy, since 
the first and second laws of thermodynamics yield the relation 

(as*/@), = - l /pT < 0. (65) 

It follows from (64) and (65) that 

flows. sblr ‘ for (extraordinary 
ordinary 

Since the relaxation process behind a normal shock wave is irreversible, S,, > Ssf 
for either type of flow. It follows that 

’ sbf.  (67) 

For ordinary flows, we see from (66) and (67) that the change in entropy due to the 
relaxation at rest from the frozen state at  the stagnation point is greater than the 
entropy change due to the one-dimensional relaxation from the frozen state 
behind the shock wave. Thus, the stagnation-point entropy is not bounded by 

This statement is only valid within a relative error of O(4). If Q = eE, one can show 
that pbE-pbr  = #A,,-A,,)e? > 0. (The sign follows from the general relation a, > ae.) 
Therefore, there exists a n&rrow range of extraordinary flows for which pb, > pa,. 

5 F L M  43 
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the frozen and equilibrium values, but actually exhibits an overshoot of the 
equilibrium entropy. This overshoot will not occur for extraordinary flows. 

If the non-equilibrium processes involve only internal modes of species (ro- 
tational or vibrational relaxation, electronic excitation), then the equilibrium 
temperature T = T*(h) only. Therefore, Tb = T*(ht), a unique value for all 
stagnation-point states. Since q i b  = q: (Tb) for all internal non-equilibrium vari- 
ables, they also have unique values. The density at  the body is proportional to 
the pressure under these conditions, and its variation is thus determined by 
the variation of the pressure. It is easy to show that the density does not exhibit 
an overshoot or undershoot for either type of flow. 

If the non-equilibrium processes involve the creation or destruction of species 
(dissociation, ionization), then Tb = T*(pb, ht).  The laws of thermodynamics 
impose no restriction on the sign of (aT*/ap)h. For the dissociation and ionization 
of air, both signs are possible, but the negative sign is found only in regions of 
very high density where virial effects are important and non-equilibrium pheno- 
mena are essentially absent. We thus obtain the condition 

flows. 
ordinary 

qe ' Tbfl for {extraordinary 

It is easy to demonstrate that the stagnation-point temperature exhibits an 
undershoot (overshoot) of the equilibrium temperature for ordinary (extra- 
ordinary) flows. Since the sign of (aq;/ap)h depends on the individual non-equili- 
brium variable qi, no general statement can be made concerning its behaviour. 
If qirepresents an internal mode of a species (as in coupled vibrational and chemi- 
cal non-equilibrium) its variation at  the stagnation point is determined from the 
variation of the temperature (68), since dq:/dT > 0. There is no overshoot or 
undershoot for such a variable. The total number of particles per unit mass is 
proportional to the compressibility factor Z appearing in the thermal equation 
of statep = pZR,T where R, is the undissociated, low temperature gas constant. 
(For the dissociation of a single diatomic gas, Z = 1 +a, where a is the atom mass 
fraction.) Since (aZ*/ap), < 0, (see Moeckel & Weston 1958), we have 

flows, 
ordinary 

z b j l z  zbe for extraordinary 

and the stagnation-point compressibility factor exhibits an overshoot (under- 
shoot) of the equilibrium value for ordinary (extraordinary) flows. The data of 
Moeckel & Weston shows that 

I(alogT*/alogp)hl < 1 and I(alogz*/alogp)hl 9 1. 

Thus, the density has the same behaviour as in the case involving internal modes 
only. 

Critique of published results 

For a typical non-equilibrium situation we consider the flow of air at  a speed of 
14 000 ft./sec and an altitude of 100000 ft. This was the case essentially considered 
by Lick (1 960) and Conti (1 966). If we let A$ = #be - $bfl be the maximum spread 
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in the stagnation-point values of the variable $, we find from exact calculations 
that 

Ap/p = 0.0385, AXi(X,-X,) = -0.0178, AT = 5*4”K, 

A 2  = - 0.0004, (70) 

where Tb = 4820°K and 2, = 1.18. Conti’s (unpublished) numerical data are 
consistent with these results. On the other hand, the relative values of the mass 
fraction of atomic oxygen uo as shown in figure 10 of Lick’s (1960) paper are 
obviously in error at the stagnation point. From equation (69)) it follows that 
the value for his x = 100 (‘practically’ equilibrium) should be lower than that 
for x = 5 (‘partial’ equilibrium), while the reverse is shown in the figure. Based 
on the difference in pressure, the difference in the values of a. should be approxi- 
mately 6 x that is indicated. 
This error in both sign and magnitude suggests that the x = 5 curve for the axial 
variation of uo must possess an infinite gradient a t  the stagnation point (Ao < l), 
although its global behaviour (see figure 5 of Lick’s paper) implies otherwise. (This 
type of phenomenon has been clearly demonstrated by Conti & Van Dyke 
(1969a), see their figure 4, K = 0.9975). 

instead of the much larger value of 4 x 

M, = 10, p ,  = 0.001 atm, T, = 290°K 

Table no. 
%b in ref. 

1000 0.916 0.0704 11.462 0.134 3.17 
0.01 0.900 0.0885 9.461 0.0743 3.9 

TABLE 1. Stagnation-point variables for the non-equilibrium flow of oxygen past a sphere, 
as calculated by scheme I1 of the method of integral relations (from Belotserkovskii 1966) 

The dangers inherent in continuing a numerical integration near the stagnation 
point by simple extrapolations are particularly great for the near frozen rkgime. 
This is given a striking illustration by considering the results of numerical solu- 
tions employing scheme I1 of the method of integral relations, as tabulated in 
Belotserkovskii (1966). As an example, table 1 presents results for several dimen- 
sionless stagnation-point variables for the flow of dissociating oxygen past a 
sphere. Two cases, one for a body radius Rb = 1000 m (near equilibrium) and 
the other for Rb = 0.01 m (near frozen), are shown. From the results of (70), 
it  follows (within three significant figures) that there should be no difference in T 
or uo between the two cases. Yet table 1 clearly shows a significant difference 
(in the wrong direction), which is almost a factor of two for the atomic mass frac- 
tion of oxygen. The density is also seriously in error, since it should be pro- 
portional to the pressure, and show less than a 2 yo difference. 

The above examples show that although the stagnation-point state is always 
found in a narrow range on one side of the state determined by equilibrium flow, 
we must exercise great care in its calculation via numerical integration from the 
shock wave. This has been successfully accomplished by Conti & Van Dyke 
(1969a), who employed appropriate change of variables guided by the local 

5-2 
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solution. Results for a Lighthill gas, accurate to five significant figures, are shown 
in their table 1, and are found to be in agreement with our results. It would be 
useful to be able to predict the stagnation-point state accurately without having 
to resort to an elaborate numerical integration for each new non-equilibrium 
flow condition. A simple method of accomplishing this is described in the next 
section. 

6. Prediction of stagnation-point state 
In this section we assume that the free-stream conditions and the equation of 

state for the gas are specified. This determines the equilibrium and frozen limits 
for the stagnation-point state, as discussed in 3 5.  The actual stagnation-point 
state is influenced by two independent factors. One is the non-equilibrium pro- 
cesses, which are characterized by the generalized rate equations (4) to (6). The 
other is the flow geometry determined by the shape and scale of the body. For 
reasons stated a t  the end of 5 4, it is simplest to predict the pressure. Within an 
error of O(e) ,  the effect of the two factors on the variation of the pressure can be 
uncoupled, and the effect of the flow geometry is contained only in its scale 
(through the shock radius R,). This will enable us to express the stagnation-point 
pressure in terms of a simple quadrature. 

The pressure change from the shock to the body can be found from ( 1 3 ~ ) .  
After an integration by parts, it  can be written (in non-dimensional form) as 

The relation between p and pv is found implicitly by introducing as independent 
variable the Lagrangian particle time t. Following Gibson & Marrone ( 1 9 6 2 ~ )  
we note that both in the blunt-body flow and the relaxation zone behind a normal 
shock wave, the fractional change in pressure is of O(e) .  We thus approximate the 
density in the denominator of the integrand by 

P ( t )  M P,,(t), (72) 

where the subscript ns indicates the normal-shock solution. Rather than follow 
the method of Gibson & Marrone (1962a) to determine p @ ( t ) ,  it is sufficient within 
the accuracy of equation (72) to employ Freeman's (1958) approximation of 
neglecting the pressure term in (13b). Introducing the shock radius R, to  define 
the non-dimensional variables 

5 = xIR,, i? = tU,/R,, 

one can readily show that at  the shock wave 

Within an error of O(E) ,  (13b),  (14) and (73) can be combined to yield 

d 
w(u,)+;ii?z 21 0; U,(O) M 1 ,  

- 
whose solution is u* M (1 + f)-1. 

(74) 

(75) 
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As discussed in $3, the approximation leading to (74 )  breaks down at the 
stagnation point. This is evident from solution (75) ,  which predicts a zero stag- 
nation-point velocity gradient. However, for the present purposes, this ' outer ' 
solution is perfectly adequate. The neglect of the pressure term in (74 )  can be 
shown to lead to large errors in PV only when lPVl is of O(s), but by then the con- 
tribution to the integral in (71)  is of O(e3),  and is therefore negligible within our 
approximation. Solution (75) must be used with caution; e.g. it  leads to an 
infinite stand-off distance 6 for plane flow. The appropriate solution for this latter 
case is discussed in the appendix. 

Equations (13a) ,  (14)  and (75)  are readily combined to yield a first-order 
equation for pV(i)  whose solution is 

(76 )  pz M - ( 1  + f)-Cl+j,* 

Substituting ( 7 2 )  and (76 )  in equation ( 7 1 )  we obtain for the stagnation-point 
pressure the relation 

The integral can be evaluated in the limits of equilibrium (or frozen) flow, for 
which p,, = e;' (or e;'). One thus obtains 

( 7 8 4  

(78b)  

- 
Pbe - p s f  €f - &e, 

- 
and Pbf-psf  =ksf- 
A comparison with (59)  and (62 )  shows that equations (78) are correct to the 
first order in e, but underestimate the exact values. Eliminating psf from ( 7 7 )  
and ( 7 8 ) ,  we obtain the final result 

ef - ee 
where the second form follows from an integration by parts. If we use the exact 
values for ??be and P b f ,  equations (79 )  should be highly accurate.? 

Equations (79 )  can be used to study the effects of each of the two factors that 
influence the stagnation-point pressure. If the rate processes are specified, the 
normal-shock solution P,,(t) can be determined. The effect of the scale of the 
flow can then be studied by evaluating either of the integrals (79)  for different 
values of R,. We note from (79b)  that if pns(t) varies monotonically with time, 

is a monotonic function of R,. If, on the other hand, we fix the scale of the flow 
by specifying R,, the effect of various rate equations can be investigated by cal- 
culating the corresponding solutions for p,,(t), and evaluating the appropriate 
integral. If p,,(t) is always bounded by erl and s;' (not necessarily a monotonic 

The expressions are not valid when ef = E,. For this case the uncoupling of the rate 
processes from the dynamics is invalid. 
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function of time), it follows from (79a) that the stagnation-point pressure will 
always lie between its frozen and equilibrium values. 

The combined effects of the rate processes and scale of the flow can be studied 
simply if the density variation is governed by a single parameter. Following 
Hayes & Probstein (1966), we will assume a single relaxation model for the 
inverse density of the form 

p;t(t) = ee + (el - 8,) e-tlr, (80) 
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FIGURE 2. Stagnation-point pressure as a function of the reaction parameter A 
for j = 0 (plane flow) a n d j  = 1 (axisymmetric flow). 

where the constant relaxation time 7 is not to be confused with the local relaxation 
time T ~ , ~  for the variable qi in reaction r appearing in (5). Upon the substitution 
of (80) into equations (79) we obtain 

where the parameter A = R s / U m ~  (82) 

E,(A) = s-ne-Asds. (83) 

varies between zero (frozen flow) and infinity (equilibrium flow), and 

slm 
The variation of the pressure with A according to (81) is shown in figure 2 for 
plane flow ( j  = 0 )  and axisymmetric flow ( j  = 1). We note that the pressure is 
always closer to the equilibrium value for plane than for axisymmetric flow. 
[This result is generally valid for a monotonically varying density law, as evident 
from (79b).] 

Equations ( S l )  and (82) can be used to define an equivalent relaxation time 7 

implicitly in terms of the stagnation-point pressure, even if relation (80) is a 
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poor approximation. Such r would in general be different for plane and axi- 
symmetric flow. A more common way to define yet another equivalent r is in 
terms of the stand-off distance, as given by equation (A4) of the appendix for 
axisymmetric flow. The numerical calculations presented in table 1 of Conti & 
Van Dyke ( 1 9 6 9 ~ )  for dissociation of a Lighthill gas provide an illustration. 
For the value of their non-dimensionless reaction-rate constant 

._ = -rp,R,/v, = 1 . 3 8 9 9 ~  lo5, 

the pressure data corresponds to A = 6.8 for axisymmetric flow and A = 5 
for plane flow, while the detachment distance yields A = 3.5. Another test of the 
validity of relation (80) is to examine the variation of the ratio T/A (which should 
be constant) with P (based on either pressure or detachment distance). The data 
for axisymmetric flow reveals a marked variation over the range of fi presented, 
which is more pronounced with A determined by the pressure than that deter- 
mined by the detachment distance. An examination of the (unpublished) 
density distribution on the axis does show a marked departure from the linear 
relaxation model (80). This is not surprising, since dissociation predominates at  
early times, while recombination becomes equally important as equilibrium is 
approached. The two processes influence the density law in different ways, both 
highly non-linear. A generalization of relation (80) that may be used to charac- 
terize these more complex distributions is the multiple relaxation model of the 
form 

n n 

This is equivalent to assuming n successive relaxation processes and requires 
the specification of 2n - 1 constants. The results for the stagnation pressure are 
then - -  

-- pb-13bf - 1--2(1+j) [zaneAnE3+2j(An)], 
?be - P b f  n 

= X an An E2(1+j) (An , ( 8 5 b )  

where A, = RS/Umrn. (86) 

n 

The above analysis shows that the relevant geometric parameter that deter- 
mines the stagnation-point conditions is the shock radius R,, independent of the 
shape of the body. In practice, however, it is some characteristic length L of a 
particular body shape that is known. A method of determining the relation be- 
tween L and R, is discussed in the appendix. 

7. Concluding remarks 
We have found that for finite relaxation times, the stagnation-point state is 

always in equilibrium, lying very close to the state given by equilibrium flow. The 
state given by identically frozen flow (infinite relaxation times) is in general far 
removed from these equilibrium states (except for the enthalpy and pressure). 
For certain state variables, the stagnation-point value for non-equilibrium flow 
may not be bounded by the values given by equilibrium and frozen flows. 
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The stagnation-point variable experiencing the greatest sensitivity to changes 
in non-equilibrium conditions is the pressure. Fortunately, the pressure is 
unaffected by the molecular transport processes, such as viscosity, heat conduc- 
tion, and diffusion, which are all present in a real flow. This suggests that an 
accurate measurement of the stagnation-point pressure can be used to obtain 
information about relaxation times for simple non-equilibrium processes. Such 
a procedure would be an alternative to those based on the stand-off distance 
(Wegener & Buzyna 1969) when flow visualization is not feasible. 

The results of this paper are only valid for blunt-nosed bodies. Sharp-nosed 
bodies (that still support a detached shock wave) have a velocity field in the 
neighbourhood of the apex that varies as a fractional power of the distance. A 
fluid particle thus requires only a finite time to reach the stagnation point. In  
this case, the complete range of conditions from equilibrium to identically frozen 
flow are attainable at  the stagnation point. 

The inclusion of molecular transport processes will naturally alter the results 
of this paper, particularly in the near-frozen r6gime. The inviscid analysis 
presented here is still a necessary first step in the solution of the complete prob- 
lem. Such a solution has recently been carried out by Conti & Van Dyke (19698). 

The author is indebted to R. J. Conti and W. G .  Vincenti for many helpful 
discussions. 

Appendix. Stand-off distance in non-equilibrium flows 
The variation of the shock stand-off distance 6 with the non-equilibrium proces- 

ses is important in certain experimental studies of non-equilibrium flow. It also 
plays a role in relating the body geometry to the shock radius, as will be shown 
below. 

The ratio 6/R, for axisymmetric flow is obtained directly by combining 
equations ( l6) ,  (72) and (76) to yield 

In the limits of equilibrium and frozen flows one obtains 

(a/Rs)e = Ee, ( A 2 4  

and (SIRAf = (A2b) 

The normalized stand-off function then becomes 

For the linear relaxation model (80) this reduces to the relation first derived by 
Blythe (1963), 

Equations (A3) and (A4) should be highly accurate if the exact values of (6/R& 
and 

P(A)  = enE2(A) = 1 -AenE,(A). (A4) 

obtained from numerical solutions are used. 
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For plane flows, the use of (76) leads to an infinite stand-off distance. Following 
Murzinov (1961), we replace the right-hand side of (13b) by a constant, so that 
(74) is replaced by 

d 
-&(Ez)+E: w c; U,(O) w 1, 

where C is a constant of order E. 

for pv: 
The solution of (A 5 ) ,  when substituted into (13a) yields the following relation 

sinh C* 
sinh [Ci( 1 +5] ' 

p v w  - 

where we have used the approximation tanh-IC* w C*. The quantity C is not 
truly a constant, since it should be proportional to E, for equilibrium flow, and 
ej for frozen flow. This suggests replacing C by a term proportional to p;:(t). 
Choosing the proportionality constant so as to yield the correct expressions for 
stand-off distance (to lowest order in E )  in the limits of equilibrium and frozen 
flow, we obtain as our final expression 

Using (A7), we obtain for the normalized stand-off distance in plane flow the 
expression 

where f ( ~ )  = (iejtsinh (3~)*logIcotanh($s)*(. (A 9) 
To lowest order in E ,  f ( 8 )  w &log(4/3e), 
which agrees with the constant-density solution for S/R, in plane flow (Hayes & 
Probstein 1966). 

In  order to relate the body geometry to the shock geometry, the ratio S/L is 
required, where L is some characteristic length of the particular body shape. 
A reasonable assumption for the variation of S/L is 

Combining (A 10) with the definition of P(R,) we obtain 

where P(R,) is given by (A3) for axisymmetric flow, and (AS) for plane flow. 
The other quantities on the right-hand side of (Al l )  are obtained from exact 
numerical solutions. 

Relation (A 11) is most important when the body shape departs markedly from 
that of a sphere (or circular cylinder), so that (L  + R,). Under these conditions, 
assumption (A 10) is also the most suspect. As an extreme example, we consider 
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axisymmetric flow past a flat-faced cylinder, for which L is the cylindrical radius. 
For this case, 

where a is a constant (Hayes & Probstein 1966). If we assume that 6/L = a(6/Rs)J 
over the whole range of non-equilibrium conditions [as suggested by equations 
(A 2) and (A 12)], we can easily calculate the maximum error in LIR, as given by 
(A 1 1 ) .  It is found to occur a t  6/R, = (eeef)4, and gives for the ratio of the exact 
to the approximate value the relation 

A reasonable value for the maximum value of ef/ee attainable in practice is 4. 
Substituting in (A 13) one finds a ratio of 0.94. Thus, the use of (A 11) to estimate 
R, in terms of the body geometry will lead to a t  most a 6 yo error under the most 
extreme conditions. Since the normalized pressure has a logarithmic dependence 
on R,, as shown by figure 2 ,  this would correspond to  a negligible uncertainty in 
the prediction of the pressure. Thus, ( A l l )  is a useful approximation for a11 
body shapes and non-equilibrium flow conditions. 
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